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2 Regression with a Log link function

Here we give a generalization of the methods by considering a nonnegative outcome Y ≥ 0 which
we model with the log-link function. In order to account for the retrospective sampling design,
we again condition on case-control status in the regression model, while obtaining simultaneously,
inferences about a marginal regression model with respect to disease status, for the underlying
population. To proceed, we now give a key re-parametrization of E(Y |X, D) = µ̃(X, D) on the
multiplicative scale. Note that:

E(Y |X, D) =
E(Y |X, D)

E(Y |X)
× E(Y |X)

=
E(Y |X, D)

E(Y |X, D = 0)
×

{
1∑

d∗=0

E(Y |X, D = d∗)

E(Y |X, D = 0)
Pr(D = d∗|X)

}−1

× E(Y |X)

= exp [log µ(X) + ν(X, D) − ν(X)]

where ν(X, D) = logE(Y |X, D)/E(Y |X, D = 0) measures the multiplicative association between
D and Y within levels of X, and accounts for selection bias possibly induced by the retrospective
sampling design. The term ν(X) = log {exp (ν(X, D = 1)) Pr(D = 1|X) + Pr(D = 0|X)} ensures
that, as one would hope would be the case, upon marginalization over D in the target population,
the conditional mean function E(Y |X, D) reduces exactly to E(Y |X). Similar to the identity
link, the current re-parametrization is nonparametric and also variation independent, which here
implies that, except for the restriction that E(Y |X, D) ≥ 0, it does not a priori rule out any data
generating mechanism.

A simplification occurs when D is rare in the population, such that E(Y |X, D = 0) ≈ E(Y |X)
and therefore ν(X) ≈ 1, which gives E(Y |X, D = 1) ≈ exp [log µ(X) + ν(X, 1)] . Therefore
E(Y |X, D) ≈ exp {log µ(X) + ν(X, 1)D}. Note here again, that only the first term on the ex-
ponential scale can be interpreted as an association measure between X and Y in the target popu-
lation, any interaction between X and D encoded in the second term of the right hand side of the
expression does not have such an interpretation. In the simple case where log µ(X) = (1,XT )β0,
and where the multiplicative association between D and Y is constant across levels of X, sim-
ply adding the main effect for D to the population model of interest to obtain E(Y |X, D) ≈
exp

{
(1,XT )β0 + νD

}
is approximately correct.

Otherwise, if the disease is not necessarily rare, one may model ν(X, D), using say ν(X, D;α) =
D

(
1,XT

)
α, resulting in the following parametric model for E(Y |X, D) =

µ̃(X, D; θ) = exp
[
(1,XT )β +D

(
1,XT

)
α− ν(X;ψ, η, α)

]
(1)

ν(X;ψ, η, α) = log
[
exp

{(
1,XT

)
α
}
p(X;ψ, η) + 1 − p(X;ψ, η)

]

θ = (β′, η, ψ′, α′)
′

Estimation and inference about θ0 the true value of θ, then follows as in the case of an identity link

function, by solving the estimating equation W
(
θ̂
)

=
∑

iUi

(
θ̂
)

= 0 given in the main text, upon

substituting in (1) for µ̃(X, D; θ), and where
(
ψ̂, η̂

)
is the mle defined in the text. The asymptotic

distribution of θ̂ is then as described in the main text, upon making the foregoing substitutions.
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3 Semiparametric efficiency for logit link

To derive the semiparametric efficiency bound for the logistic case, define the semiparametric
model M2 with sole restriction the parametric models

logitπ(X;ψ0, η0) = logit Pr(D = d∗|X, Y = 0, S = 1;ψ0, η0) = η0 +m (X;ψ0) , (2)

and

logit Pr (Y = 1|D,X; θ0) = µ†(X; β0) + ν(X, D;α0) − ν(X;ψ0, η0, α0) (3)

θ0 = (β′
0, η0, ψ

′
0, α

′
0)

′

and the model is otherwise unrestricted in f(X) and therefore in f ∗(X). Note that, whereas M1

parametrizes Pr(D = d∗|X, S = 1),M2 places a model for the density Pr(D = d∗|X, Y = 0, S = 1).
Nonetheless, as we show next, model (2) together with model (3) yield a parametric model for
the conditional density f(Y,D|X, S = 1), under the following nonparametric characterization of a
joint density (see for example Chen, 2007, Tchetgen Tchetgen et al, 2010 and Tchetgen Tchetgen
and Rotnitzky, 2012):

f(Y,D|X, S = 1) =
f(Y |D = 0,X, S = 1)OR(Y,D|X, S = 1)f(D|Y = 0,X, S = 1)∑
d,y f(Y |D = 0,X, S = 1)OR(Y,D|X, S = 1)f(D|Y = 0,X, S = 1)

=
f(Y |D = 0,X)OR(Y,D|X)f(D|Y = 0,X, S = 1)∑
d,y f(y|D = 0,X)OR(y, d|X)f(d|Y = 0,X, S = 1)

=
f(Y |D = 0,X)OR(Y,D|X)f(D|Y = 0,X) {p (1 − π) /π (1 − p)}D

∑
d,y f(y|D = 0,X)OR(y, d|X)f(d|Y = 0,X, S = 1) {p (1 − π) /π (1 − p)}d

(4)

where OR(Y,D|X, S = 1) = OR(Y,D|X) =

f(Y |D,X)f(Y = 0|D = 0,X)

f(Y |D = 0,X)f(Y = 0|D,X)

= ν(X, 1)

is the odds ratio function relatingD and Y within levels of X, which under our choice of parametriza-
tion, gives,

f(Y,D|X, S = 1; θ0) =
exp

{
Y µ†(X; β0) + Y ν(X, D;α0) − Y ν(X;α0, ψ0, η0) +Dη0 +Dm (X;ψ0)

}
∑

d,y exp {yµ†(X; β0) + yν(X, d;α0) − yν(X;α0, ψ0, η0) + dη0 + dm (X;ψ0)}

(5)
This in turn implies a parametric model f(D = 1|X, S = 1; θ0) =

∑
y f(y,D = 1|X, S = 1; θ0) for

π(X) in terms of θ0. Note that in the target population, the analog to equation (4) is

f(Y,D|X) =
f(Y |D = 0,X)OR(Y,D|X)f(D|Y = 0,X)∑

d,y f(y|D = 0,X)OR(y, d|X)f(d|Y = 0,X, S = 1)
,

which in turn can be used to verify that under the proposed parametrization,

logitE {µ̃(X, D)|X} = logit
∑

d

f(Y = 1, D = d|X)

= logit

[
1 + exp

{
− log

µ(X)

1 − µ(X)

}]−1

= logitf(Y = 1|X)
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formally justifying the earlier claim that our choice of parametrization is made to ensure such
marginalization whether nonparametric, semiparametric or parametric models are used.

The following theorem gives the efficient score for θ0 in models M2.

Proposition 1 (Logit Link) The efficient score in model M2 is given by the score equation of θ
corresponding to the log-likelihood Pn log f(Y,D|X, S = 1; θ) defined in equation (5) .

The result states that when Y is binary, the semiparametric efficiency bound is achieved by the
maximum likelihood estimator that solves PnRbin (θ) = Pn∂ log f(Y,D|X, S = 1; θ)/∂θ = 0, with

variance obtained by an empirical version of E
{
Rbin (θ0)R

T
bin (θ0)

}−1
. This results follows from

standard maximum likelihood theory.

PROOF OF PROPOSITION 1: Let L0
2 denote the Hilbert space of mean zero functions of

O = (Y,D,X), with inner product given by the expectation wrt FO the case-control distribution
of O with density equivalently written f(ε(θ0)|X, D)f ∗(D|X;ψ0, η0) f

∗(X). The model is semi-
parametric in the sense that the conditional density of the residual ε(θ0) given (X, D) and the
case-control density of X are left unrestricted. Throughout, assume that the population disease
prevalence is known. The nuisance tangent space Λnuis for the model is given by the closed linear
span of all regular parametric scores for the conditional density of ε(θ0) given (X, D) and of f ∗(X).
Then, one can verify that

Λnuis =

{
a1 (O) + a2 (X) : such that

E {a1 (O) |X, D} = E {ε(θ0)a1 (O) |X, D} = E {a2 (X)} = 0

}
∩ L0

2

It follows that the set of all influence functions is contained in the ortho-complement of Λnuis :

Λ⊥
nuis = {h1 (X, D) ε(θ0) + h2 (X) {D − Pr (D = 1|X, S = 1;ψ0, η0)} : h1, h2} ∩ L

0
2

Next, let Sθ0(O; θ0) = ∂ log f(ε(θ0)|X, D)/∂θ0 + ∂ log f ∗(D|X;ψ0, η0)/∂θ0 denote the score wrt
θ0 = (β′

0, α
′
0, η0, ψ

′
0)

′ , Then:

Sθ0(O; θ0) = S1
θ0

(O; θ0) + S2
θ0

(O; θ0)

= −
∂f(ε(θ0)|X, D; θ0)

∂ε(θ0)
×

1

f(ε(θ0)|X, D; θ0)
×
∂µ̃(X, D; θ)

∂θ
|θ0

+




0
1

∂m(X;ψ0)
∂ψ0


 {D − Pr (D = 1|X, S = 1;ψ0, η0)}

therefore, the efficient score of θ0 is given by the orthogonal projection of Sθ0(O; θ0) onto Λ⊥
nuis.

Upon noting that E

(
∂f(ε(θ0)|X,D;θ0)

∂ε(θ0)
× 1

f(ε(θ0)|X,D;θ0)
× ε(θ0)|X

)
= −1, it is straightforward to verify

that this projection is given by R(η,ψ) (θ0) , with S2
θ0

(O; θ0) = S (ψ0, η0) .
�
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